

features archive

pottery video archive

browse topics

glossary

about us

faq

If you like what you see, you should sign up for Ceramic Arts Daily and get all kinds throwing techniques

Welcome to the Education Page!

of great stuff delivered to your inbox. Sign up now and get access to this and 35 more freebies! Get your freebie

Flutes, whistles and ocarinas are known as airduct flutes and they come in many shapes and sizes. Their common characteristic is an airduct assembly, which makes it easier for

Ceramic Art Lesson Plan: Making Sounds with Clay

instruments have been made for thousands of years. This Aztec double whistle from Mexico is an example of a complex instrument with two chambers and

a novice to play, since it removes the requirement that a player carefully position their mouth and lips in the precise way necessary to get a proper tone. Ancient examples of these instruments have been found in China, India and throughout the Americas, and the pre-Columbian inhabitants of America created some of the most

complex and acoustically advanced instruments known to this day (figure 1).

two apertures. Download a printer-friendly version of this assignment here:

Making Sounds with Clay

An airduct assembly (figures 2 and 3) is complicated to build, but easy to play. The

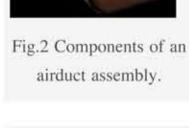
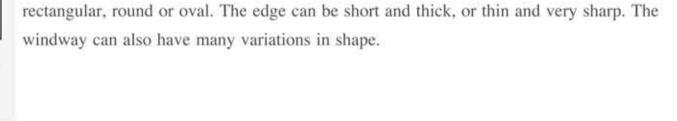


Fig.3 Ocarina cross-

section.

to produce additional pitches.


simultaneous pitches and harmonies.

pitch they produce.

Making It Work

back to front (figure 8).

How They Work

Tubular airduct flutes, sometimes simply called pipes, are tube-shaped flutes with an

whistle, and they can have finger holes or none at all. The finger holes enable the flute

airduct assembly at one end (figure 4). Examples include the recorder and penny

edge is a sharpened blade of clay that sits across the aperture from the windway,

precisely aligned so that it splits the stream of air coming from the windway.

There are many variations of airduct assemblies. The aperture can be square,

in length by Brian

Ransom.

Fig.5 Zelda ocarina by Richard and Sandi Schmidt, Inspired by a popular video game,

slipcast stoneware with

hand-cut airduct

although sometimes such instruments without finger holes are called whistles (figure 6). An ocarina has a vessel body that can be almost any shape, and an airduct assembly that causes the vessel to sound. If the instrument has finger holes, they can be placed just about anywhere on its body, since it's their size, not position, that determines the

A unique benefit of airduct assemblies is that they permit the creation of multiple flutes,

which are two or more flutes joined and played as one instrument that produces

Globular flutes with airduct assemblies are commonly called ocarinas (figure 5),

assembly.

Fig.6 This gargoyle

whistle by Kelly Averill

Savino shows the

creative range achieved

with the ocarina form.

Whistles and ocarinas are quite possibly the most widely-known and popular ceramic instrument of all time, with traditions in virtually all parts of the world. They have been made since prehistoric times, from a variety of materials. Ancient clay whistles have been found throughout Europe, and in India, Egypt and China as well. Although the "ocarina" was coined in nineteenth century Italy, the instrument itself has a much longer history.

Early inhabitants of Mesoamerica and South America were prolific whistle and ocarina

makers for a period of several thousand years. The variety and creativity of their

were usually highly decorated and often depicted human figures and animals.

globular flutes is remarkable and unparalleled. Ocarinas in pre-Columbian America

Fig.7 Bevel the tips of

wooden sticks to make

them effective cutting

tools.

A mouthpiece that works can be easily fashioned on the end of a flute or as part of an ocarina. You'll need to bevel the tips of a couple of Popsicle sticks to make them effective cutting tools (figure 7). Use a bench grinder or sharpen them with sandpaper on a flat surface.

Once you've made the body, create the mouthpiece approximately 1 inch wide by 34

inch thick and 11/2 inches long. It should have squared sides and a slight taper from

with a slight taper from

back to front. It's thick

enough to insert the

stick to create the

windway.

Fig.9 Carefully insert the stick with slow even pressure to create the windway. Be careful that the stick passes through the mouthpiece parallel to the top and

bottom surfaces and

squarely with the sides.

Carefully insert the Popsicle stick into the mouthpiece to create the windway (figure 9) The stick must pass through the mouthpiece parallel to the top and bottom surfaces and

With the windway stick still in place, use another beveled stick to cut the aperture

(figure 10). On an ocarina, this is done on the underside, and it must be located just

inside the interior of the wall of the body. Make a squared opening and remove the

cuts on all four sides. Next, with the beveled edge of the stick facing down, make a

square cut at a 45° angle, moving toward the mouthpiece. Press the stick in until it

the aperture farthest from the mouthpiece. This sharp edge splits the air from the

reaches the other stick. Your objective is to create a sharp beveled edge on the side of

small piece of clay. Cut all the way down to the stick underneath. Make clean, square

squarely with the sides. Use slow even pressure.

windway and creates the sound.

Fig.10 With the first

stick still in place, use

another beveled stick to

Fig.11 Put the If it whistles, you can complete your finger holes for flutes and ocarinas or leaving

Carefully give a test blow (figure 11). If there is no whistle, reinsert the stick in the airway and check the sharpness of the bevel. Withdraw the windway stick, being careful to keep the stick flat. Hold the piece up and look into the windway while under an overhead light. You should see the beveled edge right in the middle of the windway. If you don't, reinsert the windway stick and lay the ocarina on the table with the flat side down. Press down on the body and mouthpiece to ensure both are in full contact with the table. Remove the stick and recheck the alignment. This article appeared in Pottery Making Illustrated and was excerpted from Barry

Making airduct assemblies for clay instruments is a combination of science and art. Although it's not too difficult

Hall's comprehensive book on ceramic musical instruments From Mud to Music

published in 2006 by The American Ceramic Society.

edge.

ocarinas are the aperture size and shape, the windway size and shape, the angle of incidence, and acuteness of the Aperture size: The larger the opening between the windway and the edge, the higher the overall pitch, and larger apertures also require larger tone holes on the flute body to achieve the same pitch relationships.

tone and require more blowing pressure.

Windway size and shape: The windway focuses the air stream so it is made very thin, often less than 1?16 inch.

The width should be as wide as the edge opposite. Windways with upper and lower walls that become narrower

toward the exit increase the focus of the air stream and create a less breathier tone.

Acuteness of the edge: Recorders generally use a sharp, narrow edge at about 20° or 25°. Many ocarinas and clay

Making It Whistle to make a working model, many artists have spent years perfecting the subtle variations, and learning from trial and error what designs sound the best to their ears. Some factors that affect the tone quality in flutes, whistles and

mouthpiece to your lips and give it a test blow. instrument by placing

> no finger holes for a whistle.

Aperture shape: Short, wide openings produce a clear, focused tone. Long, narrow apertures produce a breathier

Angle of incidence: Orient the windway in such a way that it directs the air stream head on to the edge, centered so that the edge cuts the air stream roughly in half. The windway should be parallel to the tube walls, and not heading down from above.

flutes use thicker edges at about 45°.